Quantum Torsors and Hopf-galois Objects

نویسنده

  • PETER SCHAUENBURG
چکیده

We prove that every faithfully flat Hopf-Galois object is a quantum torsor in the sense of Grunspan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Torsors with Fewer Axioms

We give a definition of a noncommutative torsor by a subset of the axioms previously given by Grunspan. We show that noncommutative torsors are an equivalent description of Hopf-Galois objects (without specifying the Hopf algebra). In particular, this shows that the endomorphism θ featuring in Grunspan’s definition is redundant.

متن کامل

Coalgebra-galois Extensions from the Extension Theory Point of View

Coalgebra-Galois extensions generalise Hopf-Galois extensions, which can be viewed as non-commutative torsors. In this paper it is analysed when a coalgebra-Galois extension is a separable, split, or strongly separable extension.

متن کامل

galois extension for a compact quantum group

The aim of this paper is to introduce the quantum analogues of torsors for a compact quantum group and to investigate their relations with representation theory. Let A be a Hopf algebra over a field k. A theorem of Ulbrich asserts that there is an equivalence of categories between neutral fibre functors on the category of finitedimensional A-comodules and A-Galois extensions of k. We give the c...

متن کامل

Galois-azumaya Extensions and the Brauer-galois Group of a Commutative Ring

Introduction. Galois extensions of noncommutative rings were introduced in 1964 by Teruo Kanzaki [13]. These algebraic objects generalize to noncommutative rings the classical Galois extensions of fields and the Galois extensions of commutative rings due to Auslander and Goldman [1]. At the same time they also turn out to be fundamental examples of Hopf-Galois extensions; these were first consi...

متن کامل

Generic Hopf Galois extensions

In previous joint work with Eli Aljadeff we attached a generic Hopf Galois extension A H to each twisted algebra H obtained from a Hopf algebra H by twisting its product with the help of a cocycle α. The algebra A H is a flat deformation of H over a “big” central subalgebra B H and can be viewed as the noncommutative analogue of a versal torsor in the sense of Serre. After surveying the results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002